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1. INTRODUCTION 

Investigations into active protection systems have renewed interest in the interaction 

between flying plates and moving rods. Previous work in this area concentrated exclusively 

on interactions where the velocity vector of an explosively launched plate was normal to the 

plane of the plate (Frey, Melani, and Stegall1988). Based upon simulations with the 

computer code HULL, it was suggested (Prakash 1990) that it would be advantageous to have 

the velocity of the plate parallel to the plane of the plate. Preliminary validation experiments 

(Thomson et al. 1991) tend to support this idea. Because of the difficulties in using explosive 

charges to launch a plate with this orientation, an alternate method is desirable. 

The reconnection gun, invented (Cowan 1987) and developed (Cowan et al. 1986) at 

Sandia National Laboratories (SNLA), Albuquerque, NM, provides an attractive option for plate 

launch in the edge-on orientation. The reconnection gun induces a current in the plate by a 

time varying magnetic field produced by an external launch coil. This is similar to the action 

of a transformer where the primary winding, the external launch coil, induces a current in the 

secondary winding, the plate. The force between the magnetic field and the induced current 

in the plate accelerates the plate. This type of electromagnetic launcher has no electrical 

contact with the plate, and it has a relatively high efficiency for masses greater than a few 

hundred grams. 

The group at SNLA built a multistage reconnection gun (Cowan et al. 1988) to accelerate 

an aluminum plate to high velocities. By properly timing the pulsed power delivered to 

successive acceleration stages, a 150-g aluminum plate was launched at a velocity of 1 km/s. 

Although the use of a multistage reconnection gun obviates the need for high explosives, its 

use in active protection systems may not be practical because of its size and weight. 

Therefore, a single-stage reconnection gun is considered here. 

A single-stage reconnection gun {Hummer and Hollandsworth 1991) consisting of a square 

helical coil connected to a 11-kV, 1 00-kJ capacitor bank was constructed and used to 

accelerate, in the edge-on orientation, a number of rectangular plates of aluminum, iron, and 

copper whose masses ranged from 96 g to 631 g. The final velocities of the plates were 

measured with break-wire arrays and compared to the predictions of an equation of motion 
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derived from the total energy of the electrical circuit and the kinetic energy of the plate. This 

equation of motion was further tested by comparing the predicted velocity of an aluminum 

plate, as it was being launched, to experimental results. The position of this aluminum plate 

was detected by an optical system during launch, and its velocity was then determined from 

these data. 

In an auxiliary experiment, an infrared image of an aluminum plate was taken just after it 

was launched. This image showed that the back edge and the sides of the plate were heated 

during the launch. This method could be used to find the temperature distribution and an 

average current density distribution in the plate. These data are valuable in studying 

qualitatively the magnetic field distribution in the coil and plate. 

2. EQUATION OF MOTION 

The equation of motion can be used to predict the performance of any proposed design of 

a reconnection gun. Once the capacitance, the equivalent resistance, and the inductance 

gradient of the launch coil are given for a particular design, then the velocity and the position 

of the plate and the circuit current can be estimated at any time. It can also be used to 

estimate the velocity and the position of the plate during the actual launching by a 

reconnection gun, once the inductance gradient of the launch coil is known and the circuit 

current is measured. 

The equation of motion is complicated by the dependence of the inductance of the launch 

coil L (x(t)) on the position of the plate x(t) within the coil. This is caused by the distortion of 

the magnetic field in the coil. As an example, assume that the back edge of the plate is 

positioned close to the back side of the coil. When current flow establishes a magnetic field 

within the coil, the field lines that are normally parallel to the coil axis are bent around the 

perimeter of the plate and concentrated in the narrow gap between the plate and the back 

side of the coil by the induced current in the plate. This distortion of the magnetic field is 

illustrated in Figure 1 by a two-dimensional calculation. 
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Figure 1. Magnetic Stream Lines Around an Aluminum Plate in an Oscillating Magnetic Field. 

The shaded area In Figure 1 represents an aluminum plate in an oscillating magnetic field 

produced by two infinite current sheets. The current sheets are located at the hatched lines to 

the left and to the right of the aluminum plate, and they are perpendicular to the page. The 

current in these sheets are equal and opposite at all times. If the current in the sheet to the 

left of the aluminum plate is directed out of the page, then there is an equal current in the 

sheets to the right directed into the page. The lines between the current sheets are the 

stream lines for the magnetic field. The direction of the magnetic field is tangent to the lines, 

and the magnitude Is inversely proportional to the distance between neighboring lines. Thus, 

the concentration of the field lines in the gap between the edge of the plate and the left 

current sheet represents an area where the magnitude of the magnetic field is large. The 

interaction of the large magnetic field in the gap and the induced current in the plate pushes 
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the plate through the slot in the current sheets to the right and out of the coil. As the plate is 

being pushed out of the coil, the shape of the magnetic field lines change which in tum 

changes the Inductance of the coil. 

To derive the equation of motion of the plate, It Is assumed that the electrical circuit for a 

single-stage reconnection gun consists of a capacitor, a resistor, and a time-varying inductor 

all connected In series (Figure 2). The total energy of this system, 

E(t) = ci(t)/2C + L[x(t)] 12(t)/2 + m v2(t)l2 , (1) 

is the sum of the energy stored in the capacitor, the energy stored In the launch coil, and the 

kinetic energy of the plate. 

2 
Q (t) 

2C 

SWITCH 

LAUNCHED 
PLATE 

2 
MV (t) 

2 

Figure 2. Schematic of a Single-Stage Reconnection Gun. 

Now consider the total energy of the system at some later time, St, when 

E(t + St) = ci(t + St)/2C + L[x(t + St)]J2(t + St)/2 + mv2(t + St)/2 

4 
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This total energy, E(t+St}, Is not equal to E(t} because energy is lost in the heating of the . 

components of the circuit and the metal plate. It is assumed that this energy loss during the 

time Interval St Is equal to R t2(t} St where R Is the total resistance of the capacitor bank, the 

lgnitron switch, launch coil, and some equivalent resistance of the plate. Thus, 

-R 12(t) & = E(t + St) - E(t} (3) 

Taking the limit as St approaches zero gives 

-R 12 = Q/C dQ/dt + d(Lt2}/dt/2 + mv dv/dt • (4) 

This equation Is simplified by using the sum of voltages around the circuit loop, 

0/C - AI - d(LI)/dt = 0 , (5) 

where the first, second, and third term are the voltages across the capacitor, the equivalent 

circuit resistance, and launch coil, respectively. Using the Identity I= -dQ/dt and Equation 5, 

and carrying out the time derivatives, Equation 4 reduces to 

mv dv/dt = 12 dUdt (1/2} , (6) 

which is the equation of motion of the plate. Furthermore, since 

dUdt = dUdx dx/dt = dUdx v , 

Equation 6 may be rewritten as 

m dv/dt = 12 dUdx (112} • (7) 

The velocity and the position of the plate can be calculated from Equation 7, once the 

inductance gradient dUdx is determined and the current through the coil is measured. The 

inductance gradient, dUdx, can be determined from L(x), which is the Inductance of the coil as 

a function of the position of a stationary plate in the coil. 
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3. EXPERIMENTAL ARRANGEMENT 

A launch coil was constructed from a 23-cm-long (10 x 10 cm2) aluminum box with 

3-mm-thick walls. The sides of the box were milled to form a square helical coil with nine 

turns. A coil with similar dimensions (Freeman 1988) was considered in a two-dimensional 

computational study of a reconnection gun. The coil is confined on the outside by a stack of 

5-cm-thick G1 0 fiber glass rectangles, and on the inside by filling most of the core with fiber 

glass resin. The center part of the core is not filled so that a plate can be positioned inside 

the coil through a spacing between the windings (Figure 1 ). The plate is positioned before 

launch with its back-edge in contact with the backside of the coil. 

The inductance of the present launch-coil was measured by a Hewlett Packard 4274A 

Multifrequency LAC Meter after the plate was positioned at several locations in the coil. The 

frequency of the LAC Meter was 2,000 Hz which is close to the ringing frequency of the 

circuit-2,200 Hz for the 1,670 ~f capacitor bank. When the plate was placed in contact with 

the backside of the coil, the inductance was 2.052 ~H. The inductance was 2.484 ~H when 

the plate was halfway out and 2. 726 ~H when the plate was completely removed. Assuming 

that the inductance varies as a second-degree polynomial, then 

L(x) = 2.052 + 1 0.54 X - 38 x2 

and dL(x)/dx = 10.54 - 76.0 x 

for x < 0.1 0 m, where 0.10 m is the width of the coil. This inductance gradient is used to 

calculate the final velocity for each plate launch considered in this report. 

(8) 

(9) 

After a capacitor bank was charged to an initial voltage, the lgnitron switch (represented 

by the switch in Figure 1) was closed, connecting the capacitor bank (represented as a 

capacitor in Figure 1) to the coil and launching the plate. The velocity of the plate was then 

determined by two break wires mounted in the flight path of the plate and separated by 30 em 

(not shown in Figure 1 ). This procedure was repeated for various metal plates and for various 

initial voltages on different capacitor banks. Three different capacitor banks with different total 

capacitances (1,670 ~F. 1,040 ~F. and 515 ~F) were operated without a crowbar circuit, 
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allowing the circuit to ring. By changing the total capacitance, the ringing frequency of the 

circuit was changed as a test for frequency effects on the velocity of the plates. In a few 

launchings, the circuit was prevented from ringing by activating a crowbar circuit. 

4. EXPERIMENTAL RESULTS 

A total of 133 shots were conducted with the coil before it failed due to accumulated 

mechanical stresses. In 99 of these shots, the plate velocity was measured and grouped (see 

the Appendix) according to the material and mass of the plates and also the capacitance of 

the capacitor bank. These results and the results of other experiments where the velocity of 

the plate was not measured are discussed in this section. 

4.1 Aluminum and Coooer Plates. The analysis of the data from a particular plate 

launching is shown in detail as an example of the analysis performed on all the plates. In this 

shot, a 96-g aluminum plate was launched with a velocity of 250 m/s when a 1,670-J.LF 

capacitor bank was charged to 9,200 V. A Rogowski coil measured the time derivative of the 

coil current which was then integrated to determine the current through the coil (Figure 3). 

Using this current and the inductance gradient for the coil, the equation of motion was solved 

numerically to find the position (Figure 4) and the velocity of the plate (Figure 5) at any time. 

The final velocity is reached at the time (0.524 ms in Figure 4} when the plate has 

travelled the width of the coil (0.1 0 m). According to Figure 5, the velocity at this time is 

297.6 mls. To make the comparison between the experimental and calculated velocities 

easier, an error is defined as 

E = (Vt -Ve)Ne . (10} 

The error in this example is 0.19, where Vt is the calculated velocity (297.6 m/s) and Ve is the 

experimental velocity (250 m/s). 

The average and the standard deviation of the errors for each group of copper and 

aluminum plates (Appendix A) are presented in Figure 6. The bars represent one standard 

deviation for each group. These results are plotted against the mass of the plate to show any 
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trends that may depend on the mass of the plate. There is a possible decrease in the 

average errors as the mass increases that may be caused by plate heating, eddy currents in 

parts of the plate outside the coil, or some other effect not included in the equation of motion. 

Although the equation of motion may not include all effects, it gives the final velocities 

within a maximum error of about 0.30 for a wide variety of masses, capacitor charges, and 

capacitor banks. Because the average for all the errors is 0.06, and the standard deviation for 

all the errors is 0.15, the equation of motion gave final velocities within an error ranging from 

-0.09 to +0.21 on average. 

As stated before, the inductance of the launch coil was measured at 2,000 Hz, which is 

close to the ringing frequency of the circuit because the inductance of the launch coil depends 

on the frequency due to skin depth effects. Thus, this model indirectly includes skin depth 

effects through the inductance gradient. To test for skin depth effects, different capacitor 

banks were used to change the ringing frequency, and thus change the skin depth and the 

inductance gradient of the coil. Metal plates that had thicknesses on the order of the skin 

depth were also used as a test for skin depth effects. The model, however, predicts the 

velocities reasonably well for the different capacitor banks and over the entire range of plate 

thicknesses. Thus, skin depth effects are not obvious in this set of data. To provide some 

insight into these effects, the coil of the reconnection gun was driven by currents with different 

time profiles in an auxiliary experiment. 

In this auxiliary experiment, the coil was driven by both underdamped current waveform 

and an overdamped current waveform. The Fourier transform of the underdamped current 

waveform shows a maximum at a high frequency whereas the transform for the overdamped 

case peaks at zero frequency. Because the skin depth is inversely proportional to the square 

root of the frequency (Knoepfel 1970), the effective skin depth for the underdamped current is 

much smaller than that for the overdamped current. The coil with an underdamped current 

waveform was obtained by operating the capacitor bank without a crowbar circuit. An 

overdamped current waveform was obtained by placing a crowbar switch in parallel with the 

launch coil. This produced a current that increased to a maximum as in the first quarter cycle 

of a sine wave and decayed exponentially after the crowbar switch was closed. These two 

very different current profiles were used to launch a 238-g aluminum plate with the same initial 
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charge voltage on the capacitor bank. The measured velocities of the plate for the 

underdamped current and the overdamped current are 44 m/s and 21 m/s, respectively. The 

model predicts velocities of 43.0 m/s for the underdamped current and 60.0 m/s for the 

overdamped current. Thus, the model failed badly when the overdamped current produced 

large skin depths. 

4.2 Velocity vs. Time. The position of a plate during the launch was determined by 

optical means as another test of the model. A plate had two parallel rails that extended 

outside the coil when the plate was in its initial launch position. Mounted across these rails 

was a clear plastic sheet that had black bars printed on it which interrupted a light path. The 

time of interruption was recorded on a digital oscilloscope during the launch cycle. Thus, the 

position of the plate was recorded as a function of time which permitted determination of the 

plate velocity. 

Figure 7 shows the experimental velocity as+, and the predicted velocity as a solid line. 

The consistency of the two curves show that the equation of motion can predict reasonably 

well the velocity of the plate at any time. The error, as defined by Equation 10 for the 

calculated velocity of 21 m/s and the experimental velocity of 19 m/s, is 0.1 0, which is well 

within the range of errors observed in other launchings. 

4.3 Plate Heating in the Magnetic Field. The induced currents in the plate produce 

heating during the launch phase, while the plate resides within the magnetic field. Because 

these currents have a nonuniform distribution within the plate and on the surface, the surface 

temperature distribution should also be nonuniform immediately after launch. To observe a 

surface temperature distribution, an aluminum plate was fabricated with a nose section which 

held a nail oriented along the direction of plate motion. The nail was driven into a plywood 

barrier by the plate and stopped for viewing by an infrared 8-12 J.U1l video camera immediately 

after launch. The aluminum plate had a thick anodized coating to increase the emissivity of 

the surface for the infrared radiation. The infrared video image (Figure 8) shows that the top 

surface of the plate was heated along its trailing and side edges where the magnetic field was 

concentrated. 
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Figure 9 shows a selected horizontal video line signal which approximately bisects the 

trailing edge of the plate in the video image. The distance scale for this line was estimated by 

picking other features in this signal and correlating them to features with known distances, 

such as the length of the plate. This line shows that the heated region along the edges 

extends inward about 20 mm from the edges. 

The data of Figure 9 show that little or no heating occurred in the middle of the plate, even 

though the thickness of the plate was about twice the skin depth. Thus, the magnetic field 

was effectively excluded from the volume as though it were a thick plate. Therefore, in our 

geometry, the thickness of a plate may not be the most important dimension to use to gauge 

the significance of skin depth effects. Plate length or plate width may be the more important 

indicator of these effects. 
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4.4 Results for Iron Plates. Instead of calculating an error for the velocities as was done 

for the AI and Cu data, the calculated velocity was divided by the experimental velocity for 

each shot. The velocities and their ratios for all the iron plates are grouped according to plate 

mass and capacitor bank (see Appendix B) in the same way as was done for the aluminum 

and copper results. The average and standard deviation of the ratios for each group 

(Figure 10) shows that the ratios are approximately equal within a group. Thus, the calculated 

velocities are proportional to the experimental velocities within that group. The ratios 

decrease as the mass of the plate increases or as the thickness of the plate increases (the 

iron plates all have the same length [13 em] and width [8.5 em]). This trend in the ratio may 

be due to the heating or the plate or to the magnetic properties of the iron, or other unknown 

factors. Therefore, the simple theory developed and tested in the present work is inadequate 

to explain the iron data. Further work is required in order to understand the interaction of iron 

plates with the magnetic field. 

5. THE DESIGN OF A LAUNCH-COIL FOR FUTURE SYSTEMS 

The first step in designing a launch system is to decide on plate material and dimensions. 

Next, one estimates, through inductance calculations, the inductance gradient for candidate 

designs. Because inductance is a geometrical property, simple models of the coils can be 

constructed from common laboratory materials and used to determine inductance values. 

Indeed, the initial model tor a particular design, similar to the coil used in these experiments, 

was constructed from aluminum foil and cardboard. As the inductance measured for this coil 

model was in reasonable agreement with the estimated value, a more refined model was 

constructed using aluminum sheets riveted together. The inductance of each model was 

measured as a function of plate position within the coil (for an approximately one-quarter scale 

AI plate) for several locations in order to simulate the complete launch cycle. These data 

were then used to predict the currents delivered to the coil by various capacitor banks and, 

using the simple model, the final velocity of the plate. This procedure is currently being 

followed to design the coil for a 200-k.J reconnection gun. 
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6. CONCLUSION 

A single-stage reconnection gun has been constructed and used to accelerate flat metal 

plates, oriented edge-on, to high velocities in a short distance. A 96-g plate was accelerated 

to a final velocity of 250 m/s in a distance of 1 0 em, corresponding to an average acceleration 

of 32 kg's. A simple equation of motion which does not include the magnetic properties of the 

plate, heating, and other effects was used to predict the plate velocities. The equation of 

motion predicts velocities that are in reasonable agreement with the experimentally observed 

values to within an error range of -0.09 to +0.21 for a wide variety of experimental conditions. 

The model does not, however, provide reasonable estimates for the final velocities of the iron 

plates. 

The plate velocity during the launch phase was measured for an aluminum plate and 

compared with the model predictions. The shape of the predicted curve of plate velocity vs. 

time agreed well with the experimentally observed trend. 

Infrared Images of a thin aluminum plate obtained immediately after launch showed that 

the plate was heated In a narrow region along the trailing edge and the side edges, where the 

magnetic field and induced current is large; however, most of the plate area was not heated 

significantly. 
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Table A-1. Aluminum (96 g), 1,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (m/s) 

1,500 9.8 11.2 0.14 
2,000 17.6 21.0 0.19 
2,500 25.7 33.5 0.30 
3,000 42.4 47.9 0.13 
3,500 52.2 62.2 0.19 
3,500 52.6 65.3 0.24 
4,000 68.0 79.2 0.16 
4,500 81.2 96.5 0.19 
5,000 93.2 124.4 0.33 
5,000 102.5 119.1 0.16 
6,500 139.2 179.1 0.29 
7,500 176.0 232.8 0.32 
9,200 250.0 297.6 0.19 

Average Error = 0.22 ± 0.07 

Table A-2. Aluminum (133 g), 1 ,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) {m/s) (m/s) 

2,500 20.3 25.5 0.26 
5,000 72.7 92.9 0.28 

Average Error= 0.27 ± 0.01 
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Table A-3. Aluminum (206 g), 1,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (rnls) (rnls) 

3,000 23.2 24.9 0.07 
3,500 26.1 33.0 0.26 
3,500 30.7 31.2 0.02 
3,500 31.9 34.0 0.07 
4,000 39.9 46.8 0.17 
4,500 48.9 51.2 0.05 
5,000 55.0 63.0 0.15 
6,500 90.5 104.1 0.15 
7,500 107.5 128.4 0.19 
9,000 132.6 169.8 0.28 

Average Error= 0.14 ± 0.09 

Table A-4. Aluminum (238 g), 1,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (rnls) 

2,500 8.7 8.1 -0.07 
2,500 9.1 8.7 -0.04 
2,500 9.3 8.5 -0.09 
5,000 44.0 48.1 0.09 

Average Error= -0.03 ± 0.07 

Table A-5. Aluminum (247 g), 1,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (rnls) 

2,500 8.6 7.5 -0.13 
2,500 12.0 14.2 0.18 

Average Error = 0.03 ± 0.16 
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Table A-6. Aluminum (265 g), 1 ,670-JJ.F Capacitor Bank 

v Ve Vt Error 
(volts) (rnls) (rnls) 

2,500 8.1 8.6 0.06 
2,500 8.3 8.8 0.06 
2,500 10.1 9.4 -0.07 
3,500 18.0 19.1 0.06 
3,500 17.0 18.2 0.07 
3,500 17.7 20.0 0.13 
3,500 17.9 18.2 0.02 

Average Error = 0.05 ± 0.06 

Table A-7. Aluminum (300 g), 1 ,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (m/s) 

2,500 13.1 13.8 0.05 
3,000 17.4 21.3 0.22 
3,500 22.4 21.2 -0.05 
3,500 25.9 29.2 0.13 
4,000 26.8 36.7 0.37 
4,400 32.0 39.8 0.24 
5,000 43.0 50.8 0.18 

Average Error = 0.16 ± 0.13 

Table A-8. Aluminum (396 g}, 1 ,670-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (m/s) 

3,000 12.3 12.2 -0.01 
3,500 15.9 16.0 0.01 
3,500 17.1 17.5 0.02 
4,000 20.5 22.6 0.10 
4,500 27.0 27.1 0.00 
5,000 33.4 34.0 0.02 

Average Error = 0.02 ± 0.04 
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Table A-9. Aluminum (208 g), 1,040-~F Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (rnls) 

2,500 7.5 5.5 -0.27 
3,000 9.8 8.1 -0.17 
3,500 14.1 11.4 -0.19 
4,000 18.0 14.7 -0.18 
4,500 24.0 19.7 -0.18 
5,000 31.1 25.8 -0.17 
5,500 32.7 29.7 -0.09 
6,000 36.6 36.5 -0.00 
6,500 48.9 45.0 -0.08 

Average Error= 0.15 ± 0.07 

Table A-10. Aluminum (208 g), 515-~F Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (m/s) 

3,500 5.5 4.7 -0.15 
5,000 11.7 10.5 -0.10 
6,000 17.3 16.3 -0.06 
6,950 24.8 23.7 -0.04 

Average Error = -0.09 ± 0.04 

Table A-11. Copper (631 g), 1,670-~F Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (m/s) 

3,500 11.6 9.4 -0.19 
4,000 14.6 13.3 -0.09 
4,500 17.6 14.4 -0.18 
5,000 20.6 23.8 0.16 
5,000 22.0 17.3 -0.21 
7,500 47.7 52.6 0.10 
9,000 62.9 72.2 0.15 

Average Error = -0.04 ± 0.16 
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Table A-12. Copper (196 g), 1,040-J.LF Capacitor Bank 

v Ve Vt Error 
(volts) (m/s) (m/s) 

3,000 9.9 9.6 -0.03 
4,000 18.1 18.9 0.04 
5,000 30.1 31.1 0.03 
6,000 38.9 48.8 0.25 

Average Error = 0.08 ± 0.11 
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Table B-1. Iron (103 g), 1,670-JJ.F Capacitor Bank 

v Ve Vt VWe 
(volts) (m/s) (m/s) 

2,000 7.0 16.8 2.40 
2,500 10.3 26.0 2.52 
3,000 15.6 38.1 2.44 
3,500 20.4 53.6 2.63 
4,000 24.2 69.5 2.87 
4,500 32.8 86.7 2.64 
5,000 36.5 99.6 2.73 

Average= 2.61 ± 0.15 

Table B-2. Iron (260 g), 1,670-JJ.F Capacitor Bank 

v Ve Vt VWe 
(volts) (m/s) (m/s) 

2,500 7.2 11.8 1.64 
3,000 10.5 17.7 1.69 
3,500 14.8 24.7 1.67 
4,000 20.1 31.8 1.58 
4,500 22.8 38.9 1.71 
5,000 28.6 46.5 1.63 

Average = 1.65 ± 0.04 

Table B-3. Iron (525 g), 1,670-JJ.F Capacitor Bank 

v Ve Vt VWe 
(volts) (m/s) (m/s) 

3,500 8.0 11.1 1.39 
4,000 10.8 15.4 1.43 
4,500 13.2 19.5 1.48 
5,000 17.8 23.5 1.32 

Average = 1.40 ± 0.06 
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Table 8-4. Iron (260 g), 1,040-JJ,F Capacitor Bank 

v Ve Vt VWe 
(volts) (m/s) (m/s) 

3,500 6.6 8.5 1.29 
4,000 8.3 11.2 1.35 
4,500 10.3 14.5 1.41 
5,000 13.0 18.7 1.44 
6,000 17.0 27.8 1.64 

Average= 1.42 ± 0.12 
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